arXiv:2510.27281v1 Announce Type: cross
Abstract: Accurate prediction of Drug-Target Affinity (DTA) is crucial for reducing experimental costs and accelerating early screening in computational drug discovery. While sequence-based deep learning methods avoid reliance on costly 3D structures, they still overlook simultaneous modeling of global sequence semantic features and local topological structural features within drugs and proteins, and represent drugs as flat sequences without atomic-level, substructural-level, and molecular-level multi-scale features. We propose HiF-DTA, a hierarchical network that adopts a dual-pathway strategy to extract both global sequence semantic and local topological features from drug and protein sequences, and models drugs multi-scale to learn atomic, substructural, and molecular representations fused via a multi-scale bilinear attention module. Experiments on Davis, KIBA, and Metz datasets show HiF-DTA outperforms state-of-the-art baselines, with ablations confirming the importance of global-local extraction and multi-scale fusion.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and


