More of the Same: Persistent Representational Harms Under Increased Representation

arXiv:2503.00333v3 Announce Type: replace-cross
Abstract: To recognize and mitigate the harms of generative AI systems, it is crucial to consider whether and how different societal groups are represented by these systems. A critical gap emerges when naively measuring or improving who is represented, as this does not consider how people are represented. In this work, we develop GAS(P), an evaluation methodology for surfacing distribution-level group representational biases in generated text, tackling the setting where groups are unprompted (i.e., groups are not specified in the input to generative systems). We apply this novel methodology to investigate gendered representations in occupations across state-of-the-art large language models. We show that, even though the gender distribution when models are prompted to generate biographies leads to a large representation of women, even representational biases persist in how different genders are represented. Our evaluation methodology reveals that there are statistically significant distribution-level differences in the word choice used to describe biographies and personas of different genders across occupations, and we show that many of these differences are associated with representational harms and stereotypes. Our empirical findings caution that naively increasing (unprompted) representation may inadvertently proliferate representational biases, and our proposed evaluation methodology enables systematic and rigorous measurement of the problem.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844