Generative artificial intelligence (G-AI) has moved from proof-of-concept demonstrations to practical tools that augment radiology, dermatology, genetics, drug discovery, and electronic-health-record analysis. This mini-review synthesizes fifteen studies published between 2020 and 2025 that collectively illustrate three dominant trends: data augmentation for imbalanced or privacy-restricted datasets, automation of expert-intensive tasks such as radiology reporting, and generation of new biomedical knowledge ranging from molecular scaffolds to fairness insights. Image-centric work still dominates, with GANs, diffusion models, and Vision-Language Models expanding limited datasets and accelerating diagnosis. Yet narrative (EHR) and molecular design domains are rapidly catching up. Despite demonstrated accuracy gains, recurring challenges persist: synthetic samples may overlook rare pathologies, large multimodal systems can hallucinate clinical facts, and demographic biases can be amplified. Robust validation, interpretability techniques, and governance frameworks therefore, remain essential before G-AI can be safely embedded in routine care.
Artificial intelligence in oncology: promise, peril, and the future of patient–physician interaction
Artificial intelligence (AI) is increasingly embedded in oncology. While initial technical evaluations emphasize diagnostic accuracy and efficiency, the impact on patient–physician interaction (PPI)—the foundation of

