arXiv:2511.01946v1 Announce Type: cross
Abstract: Covalent organic frameworks (COFs) are promising adsorbents for gas adsorption and separation, while identifying the optimal structures among their vast design space requires efficient high-throughput screening. Conventional machine-learning predictors rely heavily on specific gas-related features. However, these features are time-consuming and limit scalability, leading to inefficiency and labor-intensive processes. Herein, a universal COFs adsorption prediction framework (COFAP) is proposed, which can extract multi-modal structural and chemical features through deep learning, and fuse these complementary features via cross-modal attention mechanism. Without Henry coefficients or adsorption heat, COFAP sets a new SOTA by outperforming previous approaches on hypoCOFs dataset. Based on COFAP, we also found that high-performing COFs for separation concentrate within a narrow range of pore size and surface area. A weight-adjustable prioritization scheme is also developed to enable flexible, application-specific ranking of candidate COFs for researchers. Superior efficiency and accuracy render COFAP directly deployable in crystalline porous materials.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We


