arXiv:2511.02238v1 Announce Type: new
Abstract: Novel research ideas play a critical role in advancing scientific inquiries. Recent advancements in Large Language Models (LLMs) have demonstrated their potential to generate novel research ideas by leveraging large-scale scientific literature. However, previous work in research ideation has primarily relied on simplistic methods, such as keyword co-occurrence or semantic similarity. These approaches focus on identifying statistical associations in the literature but overlook the complex, contextual relationships between scientific concepts, which are essential to effectively leverage knowledge embedded in human literature. For instance, papers that simultaneously mention “keyword A” and “keyword B” often present research ideas that integrate both concepts. Additionally, some LLM-driven methods propose and refine research ideas using the model’s internal knowledge, but they fail to effectively utilize the scientific concept network, limiting the grounding of ideas in established research. To address these challenges, we propose the Deep Ideation framework to address these challenges, integrating a scientific network that captures keyword co-occurrence and contextual relationships, enriching LLM-driven ideation. The framework introduces an explore-expand-evolve workflow to iteratively refine research ideas, using an Idea Stack to track progress. A critic engine, trained on real-world reviewer feedback, guides the process by providing continuous feedback on the novelty and feasibility of ideas. Our experiments show that our approach improves the quality of generated ideas by 10.67% compared to other methods, with ideas surpassing top conference acceptance levels. Human evaluation highlights their practical value in scientific research, and ablation studies confirm the effectiveness of each component in the workflow. Code repo is available at https://github.com/kyZhao-1/Deep-Ideation.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We

