Adaptive Detection of Software Aging under Workload Shift

arXiv:2511.03103v1 Announce Type: cross
Abstract: Software aging is a phenomenon that affects long-running systems, leading to progressive performance degradation and increasing the risk of failures. To mitigate this problem, this work proposes an adaptive approach based on machine learning for software aging detection in environments subject to dynamic workload conditions. We evaluate and compare a static model with adaptive models that incorporate adaptive detectors, specifically the Drift Detection Method (DDM) and Adaptive Windowing (ADWIN), originally developed for concept drift scenarios and applied in this work to handle workload shifts. Experiments with simulated sudden, gradual, and recurring workload transitions show that static models suffer a notable performance drop when applied to unseen workload profiles, whereas the adaptive model with ADWIN maintains high accuracy, achieving an F1-Score above 0.93 in all analyzed scenarios.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844