Explaining Software Vulnerabilities with Large Language Models

arXiv:2511.04179v1 Announce Type: cross
Abstract: The prevalence of security vulnerabilities has prompted companies to adopt static application security testing (SAST) tools for vulnerability detection. Nevertheless, these tools frequently exhibit usability limitations, as their generic warning messages do not sufficiently communicate important information to developers, resulting in misunderstandings or oversight of critical findings. In light of recent developments in Large Language Models (LLMs) and their text generation capabilities, our work investigates a hybrid approach that uses LLMs to tackle the SAST explainability challenges. In this paper, we present SAFE, an Integrated Development Environment (IDE) plugin that leverages GPT-4o to explain the causes, impacts, and mitigation strategies of vulnerabilities detected by SAST tools. Our expert user study findings indicate that the explanations generated by SAFE can significantly assist beginner to intermediate developers in understanding and addressing security vulnerabilities, thereby improving the overall usability of SAST tools.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844