arXiv:2511.03913v1 Announce Type: cross
Abstract: Deep generative models, especially diffusion architectures, have transformed image generation; however, they are challenging to control and optimize for specific goals without expensive retraining. Embedding Space Exploration, especially with Evolutionary Algorithms (EAs), has been shown to be a promising method for optimizing image generation, particularly within Diffusion Models. Therefore, in this work, we study the performance of an evolutionary optimization method, namely Separable Covariance Matrix Adaptation Evolution Strategy (sep-CMA-ES), against the widely adopted Adaptive Moment Estimation (Adam), applied to Stable Diffusion XL Turbo’s prompt embedding vector. The evaluation of images combines the LAION Aesthetic Predictor V2 with CLIPScore into a weighted fitness function, allowing flexible trade-offs between visual appeal and adherence to prompts. Experiments on a subset of the Parti Prompts (P2) dataset showcase that sep-CMA-ES consistently yields superior improvements in aesthetic and alignment metrics in comparison to Adam. Results indicate that the evolutionary method provides efficient, gradient-free optimization for diffusion models, enhancing controllability without the need for fine-tuning. This study emphasizes the potential of evolutionary methods for embedding space exploration of deep generative models and outlines future research directions.
Cloning isn’t just for celebrity pets like Tom Brady’s dog
This week, we heard that Tom Brady had his dog cloned. The former quarterback revealed that his Junie is actually a clone of Lua, a
