Towards Scalable Meta-Learning of near-optimal Interpretable Models via Synthetic Model Generations

arXiv:2511.04000v1 Announce Type: cross
Abstract: Decision trees are widely used in high-stakes fields like finance and healthcare due to their interpretability. This work introduces an efficient, scalable method for generating synthetic pre-training data to enable meta-learning of decision trees. Our approach samples near-optimal decision trees synthetically, creating large-scale, realistic datasets. Using the MetaTree transformer architecture, we demonstrate that this method achieves performance comparable to pre-training on real-world data or with computationally expensive optimal decision trees. This strategy significantly reduces computational costs, enhances data generation flexibility, and paves the way for scalable and efficient meta-learning of interpretable decision tree models.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844