arXiv:2511.03948v1 Announce Type: new
Abstract: A longstanding goal in computational educational research is to develop explainable knowledge tracing (KT) models. Deep Knowledge Tracing (DKT), which leverages a Recurrent Neural Network (RNN) to predict student knowledge and performance on exercises, has been proposed as a major advancement over traditional KT methods. Several studies suggest that its performance gains stem from its ability to model bidirectional relationships between different knowledge components (KCs) within a course, enabling the inference of a student’s understanding of one KC from their performance on others. In this paper, we challenge this prevailing explanation and demonstrate that DKT’s strength lies in its implicit ability to model prerequisite relationships as a causal structure, rather than bidirectional relationships. By pruning exercise relation graphs into Directed Acyclic Graphs (DAGs) and training DKT on causal subsets of the Assistments dataset, we show that DKT’s predictive capabilities align strongly with these causal structures. Furthermore, we propose an alternative method for extracting exercise relation DAGs using DKT’s learned representations and provide empirical evidence supporting our claim. Our findings suggest that DKT’s effectiveness is largely driven by its capacity to approximate causal dependencies between KCs rather than simple relational mappings.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the

