ADPO: Anchored Direct Preference Optimization

arXiv:2510.18913v5 Announce Type: replace-cross
Abstract: Direct Preference Optimization (DPO) is effective but brittle under annotator noise and distribution shift because it operates on hard, pairwise labels and only regularizes log-probability differences. We introduce Anchored Direct Preference Optimization (ADPO), a framework that extends preference learning to soft listwise supervision via reference anchoring. ADPO minimizes KL(q || softmax((s – s_ref) / tau_anc)), which (i) recovers supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO as special cases through suitable choices of target q, anchor policy, and temperature; (ii) induces an implicit trust region governed by the softmax Fisher metric, independent of the anchor; and (iii) supports stable dynamic-anchor updates. Empirically, we observe a task-dependent tradeoff: dynamic anchors improve online exploration under noise, while fixed anchors excel at offline distillation, achieving up to 170 to 5000 times reduction in student-teacher KL on our benchmarks.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844