Direct Semantic Communication Between Large Language Models via Vector Translation

arXiv:2511.03945v1 Announce Type: cross
Abstract: In multi-agent settings, such as debate, reflection, or tool-calling, large language models (LLMs) pass messages as plain tokens, discarding most latent semantics. This constrains information transfer and adds unnecessary computational overhead. We form a latent bridge via vector translations, which use learned mappings that enable direct semantic exchange between representation spaces. A dual-encoder translator trained between Llama-2-7B and Mistral-7B-Instruct attains an average cosine alignment of 0.538. Injecting the translated vectors at 30 percent blending strength steers the target model’s generation without destabilizing logits. Bidirectional evaluation shows a 2.01:1 transfer asymmetry, indicating that general-purpose models yield more transferable representations than instruction-tuned variants. This conservative injection preserves computational stability while demonstrating that cross-model latent communication is feasible, enabling collaborative AI systems that share meaning rather than tokens.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844