arXiv:2511.04042v1 Announce Type: cross
Abstract: Large-scale disaster Search And Rescue (SAR) operations are persistently challenged by complex terrain and disrupted communications. While Unmanned Aerial Vehicle (UAV) swarms offer a promising solution for tasks like wide-area search and supply delivery, yet their effective coordination places a significant cognitive burden on human operators. The core human-machine collaboration bottleneck lies in the “intention-to-action gap”, which is an error-prone process of translating a high-level rescue objective into a low-level swarm command under high intensity and pressure. To bridge this gap, this study proposes a novel LLM-CRF system that leverages Large Language Models (LLMs) to model and augment human-swarm teaming cognition. The proposed framework initially captures the operator’s intention through natural and multi-modal interactions with the device via voice or graphical annotations. It then employs the LLM as a cognitive engine to perform intention comprehension, hierarchical task decomposition, and mission planning for the UAV swarm. This closed-loop framework enables the swarm to act as a proactive partner, providing active feedback in real-time while reducing the need for manual monitoring and control, which considerably advances the efficacy of the SAR task. We evaluate the proposed framework in a simulated SAR scenario. Experimental results demonstrate that, compared to traditional order and command-based interfaces, the proposed LLM-driven approach reduced task completion time by approximately $64.2%$ and improved task success rate by $7%$. It also leads to a considerable reduction in subjective cognitive workload, with NASA-TLX scores dropping by $42.9%$. This work establishes the potential of LLMs to create more intuitive and effective human-swarm collaborations in high-stakes scenarios.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the


