arXiv:2511.04422v1 Announce Type: cross
Abstract: A formal link between regression and classification has been tenuous. Even though the margin maximization term $|w|$ is used in support vector regression, it has at best been justified as a regularizer. We show that a regression problem with $M$ samples lying on a hyperplane has a one-to-one equivalence with a linearly separable classification task with $2M$ samples. We show that margin maximization on the equivalent classification task leads to a different regression formulation than traditionally used. Using the equivalence, we demonstrate a “regressability” measure, that can be used to estimate the difficulty of regressing a dataset, without needing to first learn a model for it. We use the equivalence to train neural networks to learn a linearizing map, that transforms input variables into a space where a linear regressor is adequate.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the

