arXiv:2505.13567v2 Announce Type: replace-cross
Abstract: Recurrent neural networks (RNNs) trained on neuroscience-inspired tasks offer powerful models of brain computation. However, typical training paradigms rely on open-loop, supervised settings, whereas real-world learning unfolds in closed-loop environments. Here, we develop a mathematical theory describing the learning dynamics of linear RNNs trained in closed-loop contexts. We first demonstrate that two otherwise identical RNNs, trained in either closed- or open-loop modes, follow markedly different learning trajectories. To probe this divergence, we analytically characterize the closed-loop case, revealing distinct stages aligned with the evolution of the training loss. Specifically, we show that the learning dynamics of closed-loop RNNs, in contrast to open-loop ones, are governed by an interplay between two competing objectives: short-term policy improvement and long-term stability of the agent-environment interaction. Finally, we apply our framework to a realistic motor control task, highlighting its broader applicability. Taken together, our results underscore the importance of modeling closed-loop dynamics in a biologically plausible setting.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the


