arXiv:2505.10297v2 Announce Type: replace-cross
Abstract: Federated learning (FL) remains highly vulnerable to adaptive backdoor attacks that preserve stealth by closely imitating benign update statistics. Existing defenses predominantly rely on anomaly detection in parameter or gradient space, overlooking behavioral constraints that backdoor attacks must satisfy to ensure reliable trigger activation. These anomaly-centric methods fail against adaptive attacks that normalize update magnitudes and mimic benign statistical patterns while preserving backdoor functionality, creating a fundamental detection gap. To address this limitation, this paper introduces FeRA (Federated Representative Attention) — a novel attention-driven defense that shifts the detection paradigm from anomaly-centric to consistency-centric analysis. FeRA exploits the intrinsic need for backdoor persistence across training rounds, identifying malicious clients through suppressed representation-space variance, an orthogonal property to traditional magnitude-based statistics. The framework conducts multi-dimensional behavioral analysis combining spectral and spatial attention, directional alignment, mutual similarity, and norm inflation across two complementary detection mechanisms: consistency analysis and norm-inflation detection. Through this mechanism, FeRA isolates malicious clients that exhibit low-variance consistency or magnitude amplification. Extensive evaluation across six datasets, nine attacks, and three model architectures under both Independent and Identically Distributed (IID) and non-IID settings confirm FeRA achieves superior backdoor mitigation. Under different non-IID settings, FeRA achieved the lowest average Backdoor Accuracy (BA), about 1.67% while maintaining high clean accuracy compared to other state-of-the-art defenses. The code is available at https://github.com/Peatech/FeRA_defense.git.
Sex and age estimation from cardiac signals captured via radar using data augmentation and deep learning: a privacy concern
IntroductionElectrocardiograms (ECGs) have long served as the standard method for cardiac monitoring. While ECGs are highly accurate and widely validated, they require direct skin contact,



