arXiv:2506.00133v2 Announce Type: replace-cross
Abstract: The Internet of Underwater Things (IoUT) has a lot of problems, like low bandwidth, high latency, mobility, and not enough energy. Routing protocols that were made for land-based networks, like RPL, don’t work well in these underwater settings. This paper talks about RL-RPL-UA, a new routing protocol that uses reinforcement learning to make things work better in underwater situations. Each node has a small RL agent that picks the best parent node depending on local data such the link quality, buffer level, packet delivery ratio, and remaining energy. RL-RPL-UA works with all standard RPL messages and adds a dynamic objective function to help people make decisions in real time. Aqua-Sim simulations demonstrate that RL-RPL-UA boosts packet delivery by up to 9.2%, uses 14.8% less energy per packet, and adds 80 seconds to the network’s lifetime compared to previous approaches. These results show that RL-RPL-UA is a potential and energy-efficient way to route data in underwater networks.
Sex and age estimation from cardiac signals captured via radar using data augmentation and deep learning: a privacy concern
IntroductionElectrocardiograms (ECGs) have long served as the standard method for cardiac monitoring. While ECGs are highly accurate and widely validated, they require direct skin contact,



