arXiv:2510.01612v2 Announce Type: replace-cross
Abstract: The exponential growth of biomedical literature creates significant challenges for accessing precise medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide the comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a novel framework combining retrieval-augmented generation with domain-specific fine-tuning to produce evidence-based, long-form biomedical answers. Our approach integrates BioBERT embeddings with FAISS indexing and compares various re-ranking strategies (BM25, ColBERT, MonoT5) to optimize context selection before synthesizing evidence through a fine-tuned T5 model. Experimental results on the PubMedQA dataset show significant improvements over baselines, with our best model achieving substantial gains across BLEU, ROUGE, and METEOR metrics, advancing the state of accessible, evidence-based biomedical knowledge retrieval.
Sex and age estimation from cardiac signals captured via radar using data augmentation and deep learning: a privacy concern
IntroductionElectrocardiograms (ECGs) have long served as the standard method for cardiac monitoring. While ECGs are highly accurate and widely validated, they require direct skin contact,




