• Home
  • Primary
  • Emergence of psychopathological computations in large language models

Emergence of psychopathological computations in large language models

arXiv:2504.08016v2 Announce Type: replace
Abstract: Can large language models (LLMs) instantiate computations of psychopathology? An effective approach to the question hinges on addressing two factors. First, for conceptual validity, we require a general and computational account of psychopathology that is applicable to computational entities without biological embodiment or subjective experience. Second, psychopathological computations, derived from the adapted theory, need to be empirically identified within the LLM’s internal processing. Thus, we establish a computational-theoretical framework to provide an account of psychopathology applicable to LLMs. Based on the framework, we conduct experiments demonstrating two key claims: first, that the computational structure of psychopathology exists in LLMs; and second, that executing this computational structure results in psychopathological functions. We further observe that as LLM size increases, the computational structure of psychopathology becomes denser and that the functions become more effective. Taken together, the empirical results corroborate our hypothesis that network-theoretic computations of psychopathology have already emerged in LLMs. This suggests that certain LLM behaviors mirroring psychopathology may not be a superficial mimicry but a feature of their internal processing. Our work shows the promise of developing a new powerful in silico model of psychopathology and also alludes to the possibility of safety threat from the AI systems with psychopathological behaviors in the near future.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844