arXiv:2511.16699v1 Announce Type: cross
Abstract: We investigate empathy-in-action — the willingness to sacrifice task efficiency to address human needs — as a linear direction in LLM activation space. Using contrastive prompts grounded in the Empathy-in-Action (EIA) benchmark, we test detection and steering across Phi-3-mini-4k (3.8B), Qwen2.5-7B (safety-trained), and Dolphin-Llama-3.1-8B (uncensored).
Detection: All models show AUROC 0.996-1.00 at optimal layers. Uncensored Dolphin matches safety-trained models, demonstrating empathy encoding emerges independent of safety training. Phi-3 probes correlate strongly with EIA behavioral scores (r=0.71, p<0.01). Cross-model probe agreement is limited (Qwen: r=-0.06, Dolphin: r=0.18), revealing architecture-specific implementations despite convergent detection.
Steering: Qwen achieves 65.3% success with bidirectional control and coherence at extreme interventions. Phi-3 shows 61.7% success with similar coherence. Dolphin exhibits asymmetric steerability: 94.4% success for pro-empathy steering but catastrophic breakdown for anti-empathy (empty outputs, code artifacts).
Implications: The detection-steering gap varies by model. Qwen and Phi-3 maintain bidirectional coherence; Dolphin shows robustness only for empathy enhancement. Safety training may affect steering robustness rather than preventing manipulation, though validation across more models is needed.
Sex and age estimation from cardiac signals captured via radar using data augmentation and deep learning: a privacy concern
IntroductionElectrocardiograms (ECGs) have long served as the standard method for cardiac monitoring. While ECGs are highly accurate and widely validated, they require direct skin contact,




