arXiv:2601.18420v1 Announce Type: cross
Abstract: Gradient regularization (GR) has been shown to improve the generalizability of trained models. While Natural Gradient Descent has been shown to accelerate optimization in the initial phase of training, little attention has been paid to how the training dynamics of second-order optimizers can benefit from GR. In this work, we propose Gradient-Regularized Natural Gradients (GRNG), a family of scalable second-order optimizers that integrate explicit gradient regularization with natural gradient updates. Our framework provides two complementary algorithms: a frequentist variant that avoids explicit inversion of the Fisher Information Matrix (FIM) via structured approximations, and a Bayesian variant based on a Regularized-Kalman formulation that eliminates the need for FIM inversion entirely. We establish convergence guarantees for GRNG, showing that gradient regularization improves stability and enables convergence to global minima. Empirically, we demonstrate that GRNG consistently enhances both optimization speed and generalization compared to first-order methods (SGD, AdamW) and second-order baselines (K-FAC, Sophia), with strong results on vision and language benchmarks. Our findings highlight gradient regularization as a principled and practical tool to unlock the robustness of natural gradient methods for large-scale deep learning.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.



