arXiv:2601.17168v1 Announce Type: new
Abstract: Agentic systems have transformed how Large Language Models (LLMs) can be leveraged to create autonomous systems with goal-directed behaviors, consisting of multi-step planning and the ability to interact with different environments. These systems differ fundamentally from traditional machine learning models, both in architecture and deployment, introducing unique AI safety challenges, including goal misalignment, compounding decision errors, and coordination risks among interacting agents, that necessitate embedding interpretability and explainability by design to ensure traceability and accountability across their autonomous behaviors. Current interpretability techniques, developed primarily for static models, show limitations when applied to agentic systems. The temporal dynamics, compounding decisions, and context-dependent behaviors of agentic systems demand new analytical approaches. This paper assesses the suitability and limitations of existing interpretability methods in the context of agentic systems, identifying gaps in their capacity to provide meaningful insight into agent decision-making. We propose future directions for developing interpretability techniques specifically designed for agentic systems, pinpointing where interpretability is required to embed oversight mechanisms across the agent lifecycle from goal formation, through environmental interaction, to outcome evaluation. These advances are essential to ensure the safe and accountable deployment of agentic AI systems.
FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
arXiv:2601.21682v1 Announce Type: cross Abstract: Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing

