arXiv:2601.18253v1 Announce Type: cross
Abstract: Accurate evaluation of user satisfaction is critical for iterative development of conversational AI. However, for open-ended assistants, traditional A/B testing lacks reliable metrics: explicit feedback is sparse, while implicit metrics are ambiguous. To bridge this gap, we introduce BoRP (Bootstrapped Regression Probing), a scalable framework for high-fidelity satisfaction evaluation. Unlike generative approaches, BoRP leverages the geometric properties of LLM latent space. It employs a polarization-index-based bootstrapping mechanism to automate rubric generation and utilizes Partial Least Squares (PLS) to map hidden states to continuous scores. Experiments on industrial datasets show that BoRP (Qwen3-8B/14B) significantly outperforms generative baselines (even Qwen3-Max) in alignment with human judgments. Furthermore, BoRP reduces inference costs by orders of magnitude, enabling full-scale monitoring and highly sensitive A/B testing via CUPED.
FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
arXiv:2601.21682v1 Announce Type: cross Abstract: Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing


