arXiv:2601.17080v1 Announce Type: cross
Abstract: Automated respiratory sound classification supports the diagnosis of pulmonary diseases. However, many deep models still rely on cycle-level analysis and suffer from patient-specific overfitting. We propose PC-MCL (Patient-Consistent Multi-Cycle Learning) to address these limitations by utilizing three key components: multi-cycle concatenation, a 3-label formulation, and a patient-matching auxiliary task. Our work resolves a multi-label distributional bias in respiratory sound classification, a critical issue inherent to applying multi-cycle concatenation with the conventional 2-label formulation (crackle, wheeze). This bias manifests as a systematic loss of normal signal information when normal and abnormal cycles are combined. Our proposed 3-label formulation (normal, crackle, wheeze) corrects this by preserving information from all constituent cycles in mixed samples. Furthermore, the patient-matching auxiliary task acts as a multi-task regularizer, encouraging the model to learn more robust features and improving generalization. On the ICBHI 2017 benchmark, PC-MCL achieves an ICBHI Score of 65.37%, outperforming existing baselines. Ablation studies confirm that all three components are essential, working synergistically to improve the detection of abnormal respiratory events.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


