arXiv:2601.17995v1 Announce Type: cross
Abstract: Hierarchical federated learning (HFL) has emerged as an effective paradigm to enhance link quality between clients and the server. However, ensuring model accuracy while preserving privacy under unreliable communication remains a key challenge in HFL, as the coordination among privacy noise can be randomly disrupted. To address this limitation, we propose a robust hierarchical secure aggregation scheme, termed H-SecCoGC, which integrates coding strategies to enforce structured aggregation. The proposed scheme not only ensures accurate global model construction under varying levels of privacy, but also avoids the partial participation issue, thereby significantly improving robustness, privacy preservation, and learning efficiency. Both theoretical analyses and experimental results demonstrate the superiority of our scheme under unreliable communication across arbitrarily strong privacy guarantees
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


