arXiv:2601.17290v1 Announce Type: cross
Abstract: Deploying deep learning models for plant disease detection on edge devices such as IoT sensors, smartphones, and embedded systems is severely constrained by limited computational resources and energy budgets. To address this challenge, we introduce a novel Dynamic Meta-Ensemble Framework (DMEF) for high-accuracy plant disease diagnosis under resource constraints. DMEF employs an adaptive weighting mechanism that dynamically combines the predictions of three lightweight convolutional neural networks (MobileNetV2, NASNetMobile, and InceptionV3) by optimizing a trade-off between accuracy improvements (DeltaAcc) and computational efficiency (model size). During training, the ensemble weights are updated iteratively, favoring models exhibiting high performance and low complexity. Extensive experiments on benchmark datasets for potato and maize diseases demonstrate state-of-the-art classification accuracies of 99.53% and 96.61%, respectively, surpassing standalone models and static ensembles by 2.1% and 6.3%. With computationally efficient inference latency (<75ms) and a compact footprint (<1 million parameters), DMEF shows strong potential for edge-based agricultural monitoring, suggesting viability for scalable crop disease management. This bridges the gap between high-accuracy AI and practical field applications.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


