• Home
  • Uncategorized
  • Data-Augmented Deep Learning for Downhole Depth Sensing and Validation

arXiv:2511.00129v3 Announce Type: replace-cross
Abstract: Accurate downhole depth measurement is essential for oil and gas well operations, directly influencing reservoir contact, production efficiency, and operational safety. Collar correlation using a casing collar locator (CCL) is fundamental for precise depth calibration. While neural network has achieved significant progress in collar recognition, preprocessing methods for such applications remain underdeveloped. Moreover, the limited availability of real well data poses substantial challenges for training neural network models that require extensive datasets. This paper presents a system integrated into a downhole toolstring for CCL log acquisition to facilitate dataset construction. Comprehensive preprocessing methods for data augmentation are proposed, and their effectiveness is evaluated using baseline neural network models. Through systematic experimentation across diverse configurations, the contribution of each augmentation method is analyzed. Results demonstrate that standardization, label distribution smoothing, and random cropping are fundamental prerequisites for model training, while label smoothing regularization, time scaling, and multiple sampling significantly enhance model generalization capabilities. Incorporating the proposed augmentation methods into the two baseline models results in maximum F1 score improvements of 0.027 and 0.024 for the TAN and MAN models, respectively. Furthermore, applying these techniques yields F1 score gains of up to 0.045 for the TAN model and 0.057 for the MAN model compared to prior studies. Performance evaluation on real CCL waveforms confirms the effectiveness and practical applicability of our approach. This work addresses the existing gaps in data augmentation methodologies for training casing collar recognition models under CCL data-limited conditions, and provides a technical foundation for the future automation of downhole operations.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844