• Home
  • Uncategorized
  • SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification

arXiv:2601.18739v2 Announce Type: replace-cross
Abstract: Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844