arXiv:2601.19399v1 Announce Type: cross
Abstract: Recent speech modeling relies on explicit attributes such as pitch, content, and speaker identity, but these alone cannot capture the full richness of natural speech. We introduce RT-MAE, a novel masked autoencoder framework that augments the supervised attributes-based modeling with unsupervised residual trainable tokens, designed to encode the information not explained by explicit labeled factors (e.g., timbre variations, noise, emotion etc). Experiments show that RT-MAE improves reconstruction quality, preserving content and speaker similarity while enhancing expressivity. We further demonstrate its applicability to speech enhancement, removing noise at inference while maintaining controllability and naturalness.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844