arXiv:2506.11062v2 Announce Type: replace
Abstract: A central idea in understanding brains and building artificial intelligence is that structure determines function. Yet, how the brain’s complex structure arises from a limited set of genetic instructions remains a key question. The ultra high-dimensional detail of neural connections vastly exceeds the information storage capacity of genes, suggesting a compact, low-dimensional blueprint must guide brain development. Our motivation is to uncover this blueprint. We introduce a generative model, to learn this underlying representation from detailed connectivity maps of mouse cortical microcircuits. Our model successfully captures the essential structural information of these circuits in a compressed latent space. We found that specific, interpretable directions within this space directly relate to understandable network properties. Building on this, we demonstrate a novel method to controllably generate new, synthetic microcircuits with desired structural features by navigating this latent space. This work offers a new way to investigate the design principles of neural circuits and explore how structure gives rise to function, potentially informing the development of more advanced artificial neural networks.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.




