arXiv:2601.20614v1 Announce Type: new
Abstract: Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism for enhancing mathematical reasoning in large models. However, we identify a systematic lack of emphasis on more challenging questions in existing methods from both algorithmic and data perspectives, despite their importance for refining underdeveloped capabilities. Algorithmically, widely used Group Relative Policy Optimization (GRPO) suffers from an implicit imbalance where the magnitude of policy updates is lower for harder questions. Data-wise, augmentation approaches primarily rephrase questions to enhance diversity without systematically increasing intrinsic difficulty. To address these issues, we propose a two-dual MathForge framework to improve mathematical reasoning by targeting harder questions from both perspectives, which comprises a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies the implicit imbalance in GRPO via difficulty-balanced group advantage estimation, and further prioritizes harder questions by difficulty-aware question-level weighting. Meanwhile, MQR reformulates questions across multiple aspects to increase difficulty while maintaining the original gold answer. Overall, MathForge forms a synergistic loop: MQR expands the data frontier, and DGPO effectively learns from the augmented data. Extensive experiments show that MathForge significantly outperforms existing methods on various mathematical reasoning tasks. The code and augmented data are all available at https://github.com/AMAP-ML/MathForge.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844