• Home
  • Uncategorized
  • Human Values in a Single Sentence: Moral Presence, Hierarchies, and Transformer Ensembles on the Schwartz Continuum

arXiv:2601.14172v2 Announce Type: replace-cross
Abstract: We study sentence-level detection of the 19 human values in the refined Schwartz continuum in about 74k English sentences from news and political manifestos (ValueEval’24 corpus). Each sentence is annotated with value presence, yielding a binary moral-presence label and a 19-way multi-label task under severe class imbalance. First, we show that moral presence is learnable from single sentences: a DeBERTa-base classifier attains positive-class F1 = 0.74 with calibrated thresholds. Second, we compare direct multi-label value detectors with presence-gated hierarchies under a single 8 GB GPU budget. Under matched compute, presence gating does not improve over direct prediction, indicating that gate recall becomes a bottleneck. Third, we investigate lightweight auxiliary signals – short-range context, LIWC-22 and moral lexica, and topic features – and small ensembles. Our best supervised configuration, a soft-voting ensemble of DeBERTa-based models enriched with such signals, reaches macro-F1 = 0.332 on the 19 values, improving over the best previous English-only baseline on this corpus (macro-F1 $approx$ 0.28). We additionally benchmark 7-9B instruction-tuned LLMs (Gemma 2 9B, Llama 3.1 8B, Mistral 8B, Qwen 2.5 7B) in zero-/few-shot and QLoRA setups, and find that they lag behind the supervised ensemble under the same hardware constraint. Overall, our results provide empirical guidance for building compute-efficient, value-aware NLP models under realistic GPU budgets.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844