arXiv:2601.20844v1 Announce Type: cross
Abstract: This paper studies the minimal dimension required to embed subset memberships ($m$ elements and $mchoose k$ subsets of at most $k$ elements) into vector spaces, denoted as Minimal Embeddable Dimension (MED). The tight bounds of MED are derived theoretically and supported empirically for various notions of “distances” or “similarities,” including the $ell_2$ metric, inner product, and cosine similarity. In addition, we conduct numerical simulation in a more achievable setting, where the $mchoose k$ subset embeddings are chosen as the centroid of the embeddings of the contained elements. Our simulation easily realizes a logarithmic dependency between the MED and the number of elements to embed. These findings imply that embedding-based retrieval limitations stem primarily from learnability challenges, not geometric constraints, guiding future algorithm design.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.




