arXiv:2601.20571v1 Announce Type: cross
Abstract: Specifications for decentralized learning on resource-constrained edge devices require algorithms that are communication-efficient, robust to data corruption, and lightweight in memory usage. While state-of-the-art gossip-based methods satisfy the first requirement, achieving robustness remains challenging. Asynchronous decentralized ADMM-based methods have been explored for estimating the median, a statistical centrality measure that is notoriously more robust than the mean. However, existing approaches require memory that scales with node degree, making them impractical when memory is limited. In this paper, we propose AsylADMM, a novel gossip algorithm for decentralized median and quantile estimation, primarily designed for asynchronous updates and requiring only two variables per node. We analyze a synchronous variant of AsylADMM to establish theoretical guarantees and empirically demonstrate fast convergence for the asynchronous algorithm. We then show that our algorithm enables quantile-based trimming, geometric median estimation, and depth-based trimming, with quantile-based trimming empirically outperforming existing rank-based methods. Finally, we provide a novel theoretical analysis of rank-based trimming via Markov chain theory.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.



