• Home
  • Uncategorized
  • Exploring Transformer Placement in Variational Autoencoders for Tabular Data Generation

arXiv:2601.20854v1 Announce Type: cross
Abstract: Tabular data remains a challenging domain for generative models. In particular, the standard Variational Autoencoder (VAE) architecture, typically composed of multilayer perceptrons, struggles to model relationships between features, especially when handling mixed data types. In contrast, Transformers, through their attention mechanism, are better suited for capturing complex feature interactions. In this paper, we empirically investigate the impact of integrating Transformers into different components of a VAE. We conduct experiments on 57 datasets from the OpenML CC18 suite and draw two main conclusions. First, results indicate that positioning Transformers to leverage latent and decoder representations leads to a trade-off between fidelity and diversity. Second, we observe a high similarity between consecutive blocks of a Transformer in all components. In particular, in the decoder, the relationship between the input and output of a Transformer is approximately linear.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844