arXiv:2509.12626v2 Announce Type: replace-cross
Abstract: Agentic workflows promise efficiency, but adoption hinges on whether people can align systems that act on their behalf with their goals, values, and situational expectations. We present DoubleAgents, an agentic planning tool that embeds transparency and control through user intervention, value-reflecting policies, rich state visualizations, and uncertainty flagging for human coordination tasks. A built-in respondent simulation generates realistic scenarios, allowing users to rehearse and refine policies and calibrate their use of agentic behavior before live deployment. We evaluate DoubleAgents in a two-day lab study (n = 10), three deployment studies, and a technical evaluation. Results show that participants initially hesitated to delegate but used simulation to probe system behavior and adjust policies, gradually increasing delegation as agent actions became better aligned with their intentions and context. Deployment results demonstrate DoubleAgents’ real-world relevance and usefulness, showing that simulation helps users effectively manage real-world tasks with higher complexity and uncertainty. We contribute interactive simulation as a practical pathway for users to iteratively align and calibrate agentic systems.

