arXiv:2504.14174v2 Announce Type: replace-cross
Abstract: This position paper argues that the next generation of artificial intelligence in meteorological and climate sciences must transition from fragmented hybrid heuristics toward a unified paradigm of physics-guided multimodal transformers. While purely data-driven models have achieved significant gains in predictive accuracy, they often treat atmospheric processes as mere visual patterns, frequently producing results that lack scientific consistency or violate fundamental physical laws. We contend that current “hybrid” attempts to bridge this gap remain ad-hoc and struggle to scale across the heterogeneous nature of meteorological data ranging from satellite imagery to sparse sensor measurements. We argue that the transformer architecture, through its inherent capacity for cross-modal alignment, provides the only viable foundation for a systematic integration of domain knowledge via physical constraint embedding and physics-informed loss functions. By advocating for this unified architectural shift, we aim to steer the community away from “black-box” curve fitting and toward AI systems that are inherently falsifiable, scientifically grounded, and robust enough to address the existential challenges of extreme weather and climate change.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


