• Home
  • Uncategorized
  • Do we really need Self-Attention for Streaming Automatic Speech Recognition?

arXiv:2601.19960v1 Announce Type: cross
Abstract: Transformer-based architectures are the most used architectures in many deep learning fields like Natural Language Processing, Computer Vision or Speech processing. It may encourage the direct use of Transformers in the constrained tasks, without questioning whether it will yield the same benefits as in standard tasks. Given specific constraints, it is essential to evaluate the relevance of transformer models. This work questions the suitability of transformers for specific domains. We argue that the high computational requirements and latency issues associated with these models do not align well with streaming applications. Our study promotes the search for alternative strategies to improve efficiency without sacrificing performance. In light of this observation, our paper critically examines the usefulness of transformer architecture in such constrained environments. As a first attempt, we show that the computational cost for Streaming Automatic Speech Recognition (ASR) can be reduced using deformable convolution instead of Self-Attention. Furthermore, we show that Self-Attention mechanisms can be entirely removed and not replaced, without observing significant degradation in the Word Error Rate.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844