• Home
  • Uncategorized
  • On the Effectiveness of LLM-Specific Fine-Tuning for Detecting AI-Generated Text

arXiv:2601.20006v1 Announce Type: cross
Abstract: The rapid progress of large language models has enabled the generation of text that closely resembles human writing, creating challenges for authenticity verification in education, publishing, and digital security. Detecting AI-generated text has therefore become a crucial technical and ethical issue. This paper presents a comprehensive study of AI-generated text detection based on large-scale corpora and novel training strategies. We introduce a 1-billion-token corpus of human-authored texts spanning multiple genres and a 1.9-billion-token corpus of AI-generated texts produced by prompting a variety of LLMs across diverse domains. Using these resources, we develop and evaluate numerous detection models and propose two novel training paradigms: Per LLM and Per LLM family fine-tuning. Across a 100-million-token benchmark covering 21 large language models, our best fine-tuned detector achieves up to $99.6%$ token-level accuracy, substantially outperforming existing open-source baselines.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844