• Home
  • Uncategorized
  • HeRo-Q: A General Framework for Stable Low Bit Quantization via Hessian Conditioning

arXiv:2601.21626v1 Announce Type: cross
Abstract: Post Training Quantization (PTQ), a mainstream model compression technique, often leads to the paradoxical ‘low error, high loss’ phenomenon because it focuses solely on minimizing quantization error. The root cause lies in the Hessian matrix of the LLM loss landscape: a few high curvature directions are extremely sensitive to perturbations. To address this, we propose the Hessian Robust Quantization (HeRo Q) algorithm, which applies a lightweight, learnable rotation-compression matrix to the weight space prior to quantization. This joint framework reshapes the loss landscape by reducing the largest Hessian eigenvalue and reducing its max eigenvalue, thereby significantly enhancing robustness to quantization noise. HeRo-Q requires no architectural modifications, incurs negligible computational overhead, and integrates seamlessly into existing PTQ pipelines. Experiments on Llama and Qwen models show that HeRo Q consistently outperforms state of the art methods including GPTQ, AWQ, and SpinQuant not only achieving superior performance under standard W4A8 settings, but also excelling in the highly challenging W3A16 ultra low bit regime, where it boosts GSM8K accuracy on Llama3 8B to 70.15% and effectively avoids the logical collapse commonly seen in aggressive quantization.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844