arXiv:2510.02422v3 Announce Type: replace-cross
Abstract: Existing gradient-based jailbreak attacks typically optimize an adversarial suffix to induce a fixed affirmative response, e.g., “Sure, here is…”. However, this fixed target usually resides in an extremely low-density region of a safety-aligned LLM’s output distribution. Due to the substantial discrepancy between the fixed target and the output distribution, existing attacks require numerous iterations to optimize the adversarial prompt, which might still fail to induce the low-probability target response. To address this limitation, we propose Dynamic Target Attack (DTA), which leverages the target LLM’s own responses as adaptive targets. In each optimization round, DTA samples multiple candidates from the output distribution conditioned on the current prompt, and selects the most harmful one as a temporary target for prompt optimization. Extensive experiments demonstrate that, under the white-box setting, DTA achieves over 87% average attack success rate (ASR) within 200 optimization iterations on recent safety-aligned LLMs, exceeding the state-of-the-art baselines by over 15% and reducing wall-clock time by 2-26x. Under the black-box setting, DTA employs a white-box LLM as a surrogate model for gradient-based optimization, achieving an average ASR of 77.5% against black-box models, exceeding prior transfer-based attacks by over 12%.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.




