arXiv:2505.05029v3 Announce Type: replace
Abstract: Cooperation has long been a fundamental topic in both human society and AI systems. However, recent studies indicate that the collapse of cooperation may emerge in multi-agent systems (MASs) driven by large language models (LLMs). To address this challenge, we explore reputation systems as a remedy. We propose RepuNet, a dynamic, dual-level reputation framework that models both agent-level reputation dynamics and system-level network evolution. Specifically, driven by direct interactions and indirect gossip, agents form reputations for both themselves and their peers, and decide whether to connect or disconnect other agents for future interactions. Through three distinct scenarios, we show that RepuNet effectively avoids cooperation collapse, promoting and sustaining cooperation in LLM-based MASs. Moreover, we find that reputation systems can give rise to rich emergent behaviors in LLM-based MASs, such as the formation of cooperative clusters, the social isolation of exploitative agents, and the preference for sharing positive gossip rather than negative ones. The GitHub repository for our project can be accessed via the following link: https://github.com/RGB-0000FF/RepuNet.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844