arXiv:2601.21003v1 Announce Type: new
Abstract: Large Language Models usually put more emphasis on accuracy and therefore, will guess even when not certain about the prediction, which is especially severe when fine-tuned on small datasets due to the inherent tendency toward miscalibration. In this work, we introduce Bayesian-LoRA, which reformulates the deterministic LoRA update as a probabilistic low-rank representation inspired by Sparse Gaussian Processes. We identify a structural isomorphism between LoRA’s factorization and Kronecker-factored SGP posteriors, and show that LoRA emerges as a limiting case when posterior uncertainty collapses. We conduct extensive experiments on various LLM architectures across commonsense reasoning benchmarks. With only approximately 0.42M additional parameters and $approx1.2times$ training cost relative to standard LoRA, Bayesian-LoRA significantly improves calibration across models up to 30B, achieving up to 84% ECE reduction and 76% NLL reduction while maintaining competitive accuracy for both in-distribution and out-of-distribution (OoD) evaluations.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


