arXiv:2601.21076v1 Announce Type: new
Abstract: Deep learning has been successful in predicting neurodegenerative disorders, such as Alzheimer’s disease, from magnetic resonance imaging (MRI). Combining multiple imaging modalities, such as T1-weighted (T1) and diffusion-weighted imaging (DWI) scans, can increase diagnostic performance. However, complete multimodal datasets are not always available. We use a conditional denoising diffusion probabilistic model to impute missing DWI scans from T1 scans. We perform extensive experiments to evaluate whether such imputation improves the accuracy of uni-modal and bi-modal deep learning models for 3-way Alzheimer’s disease classification-cognitively normal, mild cognitive impairment, and Alzheimer’s disease. We observe improvements in several metrics, particularly those sensitive to minority classes, for several imputation configurations.
Inside the marketplace powering bespoke AI deepfakes of real women
Civitai—an online marketplace for buying and selling AI-generated content, backed by the venture capital firm Andreessen Horowitz—is letting users buy custom instruction files for generating

