arXiv:2601.21276v1 Announce Type: cross
Abstract: Large Language Model (LLM) Agents are advancing quickly, with the increasing leveraging of LLM Agents to assist in development tasks such as code generation. While LLM Agents accelerate code generation, studies indicate they may introduce adverse effects on development. However, existing metrics solely measure pass rates, failing to reflect impacts on long-term maintainability and readability, and failing to capture human intuitive evaluations of PR. To increase the comprehensiveness of this problem, we investigate and evaluate the characteristics of LLM to know the pull requests’ characteristics beyond the pass rate. We observe the code quality and maintainability within PRs based on code metrics to evaluate objective characteristics and developers’ reactions to the pull requests from both humans and LLM’s generation. Evaluation results indicate that LLM Agents frequently disregard code reuse opportunities, resulting in higher levels of redundancy compared to human developers. In contrast to the quality issues, our emotions analysis reveals that reviewers tend to express more neutral or positive emotions towards AI-generated contributions than human ones. This disconnect suggests that the surface-level plausibility of AI code masks redundancy, leading to the silent accumulation of technical debt in real-world development environments. Our research provides insights for improving human-AI collaboration.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844