arXiv:2509.15271v2 Announce Type: replace-cross
Abstract: Mental rotation is a key test of spatial reasoning in humans and has been central to understanding how perception supports cognition. Despite the success of modern vision transformers, it is still unclear how well these models develop similar abilities. In this work, we present a systematic evaluation of ViT, CLIP, DINOv2, and DINOv3 across a range of mental-rotation tasks, from simple block structures similar to those used by Shepard and Metzler to study human cognition, to more complex block figures, three types of text, and photo-realistic objects. By probing model representations layer by layer, we examine where and how these networks succeed. We find that i) self-supervised ViTs capture geometric structure better than supervised ViTs; ii) intermediate layers perform better than final layers; iii) task difficulty increases with rotation complexity and occlusion, mirroring human reaction times and suggesting similar constraints in embedding space representations.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844