arXiv:2509.12991v2 Announce Type: replace-cross
Abstract: ECG foundation models are increasingly popular due to their adaptability across various tasks. However, their clinical applicability is often limited by performance gaps compared to task-specific models, even after pre-training on large ECG datasets and fine-tuning on target data. This limitation is likely due to the lack of an effective post-training strategy. In this paper, we propose a simple yet effective post-training approach to enhance ECG foundation models. We evaluate it on a publicly available Transformer-based foundation model. Experiments across multiple ECG tasks show that our method consistently outperforms baseline fine-tuning. On the PTB-XL benchmarks, it improves macro AUROC by 0.7%-8.9% and macro AUPRC by 23.3%-77.9%, also outperforming several recent state-of-the-art approaches, including task-specific and advanced architectures. Further analyses demonstrate improved training dynamics and data efficiency, with only 30% of the training data outperforming the baseline trained on the full dataset. Ablation studies highlight the importance of stochastic depth and preview linear probing. These findings underscore the potential of post-training strategies to improve ECG foundation models, and we hope this work will contribute to the continued development of foundation models in the ECG domain.


