arXiv:2512.02413v2 Announce Type: replace-cross
Abstract: Automatic 3D reconstruction of indoor spaces from 2D floor plans necessitates high-precision semantic segmentation of structural elements, particularly walls. However, existing methods often struggle with detecting thin structures and maintaining geometric precision. This study introduces MitUNet, a hybrid neural network combining a Mix-Transformer encoder and a U-Net decoder enhanced with spatial and channel attention blocks. Our approach, optimized with the Tversky loss function, achieves a balance between precision and recall, ensuring accurate boundary recovery. Experiments on the CubiCasa5k dataset and a proprietary regional dataset demonstrate MitUNet’s superiority in generating structurally correct masks with high boundary accuracy, outperforming standard models. This tool provides a robust foundation for automated 3D reconstruction pipelines. To ensure reproducibility and facilitate future research, the source code and the proprietary regional dataset are publicly available at https://github.com/aliasstudio/mitunet and https://doi.org/10.5281/zenodo.17871079 respectively.
CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
arXiv:2512.02551v2 Announce Type: replace-cross Abstract: In this paper, we propose CUDA-L2, a system that combines large language models (LLMs) and reinforcement learning (RL) to automatically



