• Home
  • Uncategorized
  • From Navigation to Refinement: Revealing the Two-Stage Nature of Flow-based Diffusion Models through Oracle Velocity

From Navigation to Refinement: Revealing the Two-Stage Nature of Flow-based Diffusion Models through Oracle Velocity

arXiv:2512.02826v2 Announce Type: replace-cross
Abstract: Flow-based diffusion models have emerged as a leading paradigm for training generative models across images and videos. However, their memorization-generalization behavior remains poorly understood. In this work, we revisit the flow matching (FM) objective and study its marginal velocity field, which admits a closed-form expression, allowing exact computation of the oracle FM target. Analyzing this oracle velocity field reveals that flow-based diffusion models inherently formulate a two-stage training target: an early stage guided by a mixture of data modes, and a later stage dominated by the nearest data sample. The two-stage objective leads to distinct learning behaviors: the early navigation stage generalizes across data modes to form global layouts, whereas the later refinement stage increasingly memorizes fine-grained details. Leveraging these insights, we explain the effectiveness of practical techniques such as timestep-shifted schedules, classifier-free guidance intervals, and latent space design choices. Our study deepens the understanding of diffusion model training dynamics and offers principles for guiding future architectural and algorithmic improvements.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844