• Home
  • Uncategorized
  • LATTE: Learning Aligned Transactions and Textual Embeddings for Bank Clients

LATTE: Learning Aligned Transactions and Textual Embeddings for Bank Clients

arXiv:2508.10021v4 Announce Type: replace-cross
Abstract: Learning clients embeddings from sequences of their historic communications is central to financial applications. While large language models (LLMs) offer general world knowledge, their direct use on long event sequences is computationally expensive and impractical in real-world pipelines. In this paper, we propose LATTE, a contrastive learning framework that aligns raw event embeddings with semantic embeddings from frozen LLMs. Behavioral features are summarized into short prompts, embedded by the LLM, and used as supervision via contrastive loss. The proposed approach significantly reduces inference cost and input size compared to conventional processing of complete sequence by LLM. We experimentally show that our method outperforms state-of-the-art techniques for learning event sequence representations on real-world financial datasets while remaining deployable in latency-sensitive environments.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844